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Dissipative magnetogasdynamic flow 
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An analysis of the structure of the wakes and waves in steady compressible 
magnetohydrodynamics is presented. No restriction is made on the equation 
of state of the gas or on the ratios of the various dissipative parameters. An 
asymptotic solution is obtained which furnishes directly the flow far from a 
body and which may be used in the construction of the entire flow field. The 
non-dissipative solutions are obtained as a non-uniform limit for vanishing 
dissipation; no matter how small the dissipation, one can go far enough from the 
origin that the flow is essentially dissipative. For non-aligned fields the wave 
pattern consists of a downstream wake and either two or four standing waves, 
depending on the flow regime. For aligned fields, two of these waves become 
wakes, so that the wake is a superposition of three structured layers, with either 
all downstream or two downstream and one up-stream. It is found that the non- 
dissipative limit of the wake is non-unique for the aligned fields case. Different 
limits are obtained depending on how the various dissipative parameters vanish. 

1. Introduction 
In  this paper we consider steady magnetohydrodynamic flow in the Oseen 

approximation. No restriction is placed on the equation of state of the gas or on 
the various dissipative parameters (viscosity, thermal and electrical conduct- 
ivity). The method of approach is to obtain the fundamental solution. It was 
shown in an earlier paper (Salathe & Sirovich 1967) how this could be used to 
obtain the solution for arbitrary boundary-value problems. In  5 2 of the present 
paper we demonstrate that the fundamental solutions themselves provide the 
far field flow past a finite body. This is obtained simply in terms of such quantities 
as the total force on the body, heat added, etc. 

In  53 we obtain the fundamental solutions for the non-aligned fields case. 
An asymptotic solution is obtained applicable for distance from the origin 
large compared to the mean free path. It is well known that there exist two dis- 
tinct flow regimes in magnetohydrodynamics, the doubly hyperbolic and the 
hyperliptic. In  each of these we obtain a downstream wake which is a pure 
entropy wake. That is, it carries only density and temperature disturbances 
and is structured by thermal conductivity. In  the doubly hyperbolic regime, the 
flow exhibits, in addition, four structured waves, while in the hyperliptic case, 

t Present address: Center for the Application of Mathematics, Lehigh University, 
Bethlehem, Pennsylvania. 
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two structured waves are superposed on the elliptic flow of the non-dissipative 
theory. In both cases, some of the waves may be inclined upstream. The flow 
in the waves is isentropic, and the waves are structured by all three dissipative 
parameters. 

In the limit of vanishing dissipation, the non-dissipative solution (Salathe 
& Sirovich 1967) is recovered. However, the limit is non-uniform-no matter 
how small the dissipation, the flow is essentially dissipative a t  large distances. 

When the angle be tween the applied magnetic field and the free-stream velocity 
vanishes, two of the waves collapse on the axis and become part of the wake 
They may both collapse downstream, in which case the wake consists of three 
downstream structured layers. On the other hand, one may collapse upstream, 
and the wake then consists of two structured layers downstream and one up- 
stream. 

The compressible aligned fields wake was studied previously by Fan (1964), 
who considered a number of special cases. Unlike the gasdynamic case, each of 
the layers which make up the wake are, in general, structured by all dissipative 
mechanisms. Each carries entropy, vorticity and current, and the sum of the 
fluid plus magnetic pressure is constant across the wake. 

In  the limit of vanishing dissipation, the non-dissipative solution (Salathe 
& Sirovich 1967) is obtained (again as a non-uniform limit) provided that all 
three wakes lie downstream. However, when one of the wakes lies upstream, the 
non-dissipative solution obtained depends on the way in which the dissipative 
parameters vanish. In  this regime, therefore, the correct non-dissipative flow 
can be obtained only by considering the underlying dissipative problem. The 
case of an upstream wake in non-dissipative magnetohydrodynamics is well 
known to be non-unique and a variety of different solutions have been suggested 
(Sears & Resler 1959; Stewartson 1960; Leibovich & Ludford 1966; Salathe & 
Sirovich 1967). All of these are, of course, correct within the framework in which 
they have been obtained. However, when a non-dissipative fluid is regarded as a 
limiting form of a real fluid, we see that none of the aforementioned papers can 
furnish the proper solution. 

2. Far field flow and fundamental solutions 
We consider magnetohydrodynamic flow past a finite body. In  previous papers 

(Sirovich 1967a; Salathe & Sirovich 1967) it was shown that the body, having a 
surface S = 0, could be replaced by a surface singularity in the flow field on 
which sources are distributed. The equations for an impermeable body are: 

ap‘/at+v‘ .pw = 0, (2.1) 

- ( J x B ‘ ) ~  = [p‘ni-Pi jnJ6(S) ,  (2 .2)  

(2.3) 
(2.4) 

(slat) p’u; + (apx;) pfu;u; + (apyax;) - (alax;) pii 

a/atp’(E’Qu’2) + alax; {p (d  + *u12) u; +pru; - +J; + QJ - J~ E$ = [ ~ ~ ~ ~ 1  s(x), 

P.. 23 = F(pu’ L, 3 . +?A;,$) - +Fa‘. u’&, 
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Q = - KV‘T’ + [ K T ’ ~ ]  6(s), (2.5) 

P 
V’.B‘ = -[B’.n]&(S), 

J = (T(E+u’ x B’). 

Here p’, d, p’, u’ denote the mass density, internal energy, fluid pressure and 
velocity, and E, J, B’ denote the electric field, total current density and magnetic 
induction. pij  is the viscous stress tensor and Q the heat flow vector; j!i is the 
viscosity, K the thermal conductivity, cr the electrical conductivity and p the 
permeability. 6(S) is a one-dimensional delta function having the property 

n c 

The bracket in each of the source terms denotes the jump of the quantity in 
brackets across S,  n denoting the outward normal to S. For our purposes it is 
convenient to take as the internal flow pi, TA, p; ,  u’ = 0, where zero subscripts 
denote upstream values, and the magnetic field is determined by [B.n] = 0 
(which of course is the natural condition). 

Far field 

The problem of finding the far field may be considerably reduced. To see this, we 
normalize x’ with respect to distance R from the body, then for R large compared 
to a characteristic body dimension 1, we can expand the right-hand sides of the 
equations. Using the relation (2.9) the sources can be written in the form (Sirovich 
19673) 

FS(S) = SJP(xo)S(x-xo)dS, 

= S(X) FdS0--a- G(x)Jszo,Bds,+ ..., s, ax, 
(2.10) 

which represents a multipole expansion, obtained by expanding S(x - xo). 
Keeping only the leading term, 

F q s )  = ~ ( x ) ~ s P d s o + O  (k) 
Consequently, the right-hand sides of (2.1)-(2.6) reduce to 6(x) times the 

quantity in brackets integrated over the body surface. They therefore represent 
the equations for the fundamental solution; however, the coefficients of the delta 
function, representing the strength of the source at  the origin, have all been 
determined. For example, the source in the momentum equation is the total 
pressure and viscous force on the body, the source in the energy equation is the 
total heat added by the body, the source in Ampere’s law is the total current 
induced by the body. The source term in the heat conduction equation (2.5) is a 
result of temperature change across the body due to finite thermal conductivity, 
and will yield an effective heat source term in the energy equation. When the 
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thermal conductivity of the body is infinite, the temperature on S is constant, 
and this term vanishes. Equation (2.7) reduces to V’ . B = 0, by our choice of the 
boundary condition on B‘ . n. 

Oseen equations 

We consider steady flows linearized about an undisturbed flow field consisting of 
a uniform free-stream velocity Uo, a uniform applied magnetic field Bo, and an 
electric field E, = -Uo x Bo (this assures zero current in the undisturbed flow). 
The resulting equations will be referred to as the Oseen form of the magneto- 
hydrodynamic equations. 

We introduce the following normalization: 

(2.11) 

Fundamental solution 

In  this notation the equations for the fundamental solutions are: 

V . u + U . V p  = 0,  (2.12) 

1 
U . V u + V p + V T - A 2 ( V x b )  x B - - ( V ~ U + + V V . U )  = MS(x), (2.13) 

Re 

U.VT+ (y  - l )V .u -= V2T = HS(x)  +h.VG(x), (2.14) 

(2.15) U x b + u x B + e - - V x b = P S ( x ) ,  

where Re = ( L / v )  (apo/apo)$, is the Reynolds number, Rm = g,uL (apo/8po)$o 
is the magnetic Reynolds number and Pr = V [ ~ , C ~ ] / K  is the Prandtl number; 
y = c,/c,,,, v = p/p0 and A2 = B~/,upO(apO/apO)To. We have assumed the gas state 
to be specified by equations of the form 

1 
Rm 

E’ = E ’ ( P ’ ,  TI), 

p’ = p‘(p‘, TI). 

We seek solutions which depend only on x and z, and so take x = (x, 2 ) .  
A 

M, H ,  H, and F are constants normalized according to 

(2.16) 

(2.17) 
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where M’, H ,  H‘, F‘ are the corresponding dimensional source strengths, given by 

H‘ = Q.ndS-U.M‘, 
1s 

n 
(2.18) 

A 

H I = -  KTndS, 
Js  

F‘ = Is JsdS +Je J dv. 

The currents appear in the momentum source as a result of substituting J 
from AmpBre’s law, and represent the additional force on the body due to surface 
currents at the body and current carried by the body. The U.  M’ term in the 
H’ expression is a 5esult of subtracting the momentum equation from the energy 
equation, and the H’ term is a result of the source in the Fourier law, representing 
the temperature jump across the body. This term is kept since the temperature 
jump can be large, for example, by maintaining a large temperature gradient in 
the body. 

The dissipative parameters of the problem occur in the three dimensionless 
combinations Re, Rm, PrRe. Re and Rm are not, strictly speaking, Reynolds 
numbers unless L is based on a characteristic dimension of the problem. In fact, 
in seeking the fundamental solution, no outside length scale appears. We find 
it convenient to fix L by the condition 

max (Re-l, Rm-l, [PrReI-l) = O( 1). (2.19) 

Defined in this way, L is a characteristic or intrinsic length-scale of the fluid 
itself. (For simple gases, kinetic theory shows that L may be identified with the 
mean-free-path.) The condition (2.19) is purposely left vague, since in later sec- 
tions various limits will be carried out. 

The condition V . b = 0 is automatically satisfied on introducing the function 

4 by 
(2.20) 

We now Fourier transform the equations, using the same symbol for the trans- 
formed variable as for the untransformed variable, e.g. 

p(k) = / + “ p ( x )  e-ikexdx, (2.21) 
--m 

where k = (k,, k,). In  component form the transformed equations are 

ik, ux ik, ik, 0 0 P 
ik, ik, lJx 0 ik, (k? + k:) A2Bz 
ik, 0 ik, u, ik, - (k? + ki) 0 A 2 B z ]  [ 3 1 
0 ( y  - 1) ik, (7 - 1) ik, ik, Ux 
0 -BZ B X  0 ik, U, 
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+ 

0 0 
1 1 

0 -(k?+ki) Re Z e k l k 3  

0 3Rek'k, z ( k : + k : )  

1 
+-k; 3Re 
1 1 

0 0 

1 
3Re +-k: 

0 Y 
PrRe - (k? + h i )  0 0 0 

0 0 0 0 
1 
Rm - (k? + k: 

or, in matrix notation, 

where M, contains only dissipative terms, 

MV = M,v+M,v = S,  

(2.2i 

(2.23) 

We have included the source rn in the continuity equation for generality, 
and have eliminated the H source in the energy, since its effect can be obtained 
by suitable differentiation of the resulting solution. 

In  the above equations the free streamvelocityU has, without loss of generality, 
been taken in the (x,y)-plane, and it is assumed that the applied field B lies in 
the (x, x)-plane, i.e. U = (U,, U,), B (B,, B,). This results in a decoupling of the 
equations for the y components of velocity and magnetic field and the two sys- 
tems can be considered separately. 

The last of the equations in (2.22) is the y component of (2.15). 
The equations for u, and b, are 

h 

ik, u, - ik, A'B, - ik, A2B, 

- ik, B, - ik, B, ik, u, 

The second equation is a combination of the x and x components of (2.15). 

3. The dissipative solution 
The solution to equations (2.11) is 

(3.1) 

where M* is the signed transpose of the cofactor matrix of M (i.e. the classical 
adjoint) and D is the determinant of M. 
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The direct evaluation of (3.1) is not feasible. Instead, we follow an approach 
introduced in a similar analysis of the gas-dynamic case by Sirovich (1961,1967 b) .  
We start from a knowledge of the discontinuities? of (3.1) in the non-dissipative 
case (Salathe & Sirovich 1967). Such discontinuities imply that the higher-order 
dissipative operators become important in that region and that a boundary- 
layer analysis is required. In regions removed from discontinuities the non- 
dissipative solutions are regarded as correct. This method may be given a mathe- 
matically rigorous basis. For a discussion of this point see Sirovich (1967b). 

D z 

I 4 
h 

FIGURE 1. (h, t )  co-ordinates, measuring distance along and normal to a given wave. 

To centre attention on a particular wave, we transform from (x, y )  co-ordinates 
to (n , t )  co-ordinates, where lz denotes distance along the wave and t distance 
across the wave (figure 1). 8 is the angle the wave makes with the x-axis. Then 
the transformation is given by 

cos8 sin8 x (I") = (-sin8 cos0) (z) 

or, in wave-number space, by 

where m is the wave-number across the layer and n is the wave-number along 
the layer. The angle 8 corresponds to a root d of the equation DND(kl/k3) = 0 
through the relation 8 = - tan-l d,  where DND is the determinant of the matrix 

M N D  

The boundary-layer condition across a wave is 

a a  - B -  
at an' (3.4) 

which in wave-number space becomes Iml 9 In[. From the normalization (2.19) 
this becomes 

In1 < Iml < 1. 

This is true since we are only interested in scale variations which are large 
compared to the 'mean free path'. 

term' wave' generically to refer to all such discontinuities. 

(3.5) 

t The discontinuities are in the form of MHD Mach lines and wakes. We shall use the 
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The boundary-layer analysis is accomplished by taking the lowest-order 
non-dissipative and dissipative terms of D in (3.1) as being of the same order. 
We shall assume the applied magnetic field and free stream velocity are not 
aligned. The aligned fields case will be discussed in the next section. 

We begin by considering the wake. Since it lies along the x axis the transforma- 
tion (3.2),  (3.3) is not necessary. It is easily found that the leading terms in D are 

1 
D - ik,k~[A2BzyUx] + kg- PrRe [A2Bz] (3.6)  

provided B, and A are bounded away from zero. Since we require these terms 
to be of the same order, we obtain 

k, - k,2, (3 -7 )  

which furnishes us with the relative order of k,, k,. With (3.6) we can easily obtain 
the lowest-order form of M*,  and from this the leading order in the wake is 

T = -p. J 
The magnetic field and velocity perturbations vanish to this order, 

In  the limit l/PrRe + 0 this becomes 

This is the non-dissipative wake obtained by Salathe & Sirovich (1967). 
The approach to the non-dissipative solution is not uniform. The non-dissi- 

pative solution is obtained in the limit e = z / ( P r R e )  = 0. Therefore, no matter 
how small l / P r R e  is, it  is possible to choose x large enough that E is no longer 
small. This effect has been noted previously by Sirovich (1961, 19673) for gas 
dynamics. 

We now turn to the analysis of the waves. Imposing the transformation (3.3) on 
D, we obtain 

D inm4 (4 cos 8 sin 4 8 U: + sin B ( sin2 B - cos2 8) 2 y U, A2Bx B, 

- 2 sin2 8 cos Boil.( y + A2) + 2 sin2 B cos 8 y  U ,  A2 (Bi - BZ)) 

+ in2m3 { - 10 cos2 8 sin3 8 U; + ( C O S ~  B sin 8 - 4 cos2 8 sin 8 - sin5 8) 

x [ U, yA2 - Uz(y  + A2)] + 4 sin 8 cos2 8A2Bz y U, 

+ (~0~5e-sin4cos8) 2U,yA2B,B,)+m6{(1/Re) U:sin28 

x [$ U: sin2 8 - y - A2 - +A2 sin2 (0 - $)] + (y/PrRe) [sin4 B U: 

+A2sin2(8-$) -sin28U:(1 + A2)]+(1/Rm)sin28U:[sin2BUi-yl). 
(3.10) 
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Although the nm4 term is of lower order than the n2m3 term, the latter has been 
retained since the coefficient of the former vanishes a t  what we shall refer to as 
magnetosonic conditions (i.e. the transition between doubly hyperbolic and 
hyperliptic). As we shall see, a solution valid through magnetosonic conditions 
will be obtained. 

Matching the leading dissipative and non-dissipative terms of D gives 

n N m2 

n2 N m3, 
and at  magnetosonic conditions 

(3.11) 

(3.12) 

which furnishes us with the relative ordering of n and m. With this ordering we 
can obtain the lowest order form of M*.  As in a previous paper (Salathe & Siro- 
vich 1967) the following simplified representation may be found: 

where 
k!& N xi$, 

U 2  

Y 
Yl = Y4 = m2-x[(U~-y)sin~8-~~sin~~~os~~], I 
Y, = m2[ U:sin3 8 cos 8 + U,A2B, B,sin2 8- U,A2B; sin 8 cos 81, 
Y2 = m2[ - U: sin4 8 + U, A2Bt sin2 8 - U, B, B, A2 sin 8 cos 81, 

Y, = im3 P, A2 sin2 8[B, sin 8 + B, cos 81, 

(3.13) 1 
I 

In  each of the above elements of M* the leading dissipative term is of higher 
order than the leading non-dissipative term, and so the dissipative terms have 
not beenincluded. 

Equation (3.10) for the denominator, and the expressions for the M,*,, can now 
be substituted into (3.1) to obtain the solution. The matrix elements M g  contain 
only m4 or m5. Consequently, the solution can be expressed in terms of the integral 

(3.14) 

and its derivative with respect to t .  The definitions of 0, @ and Y are obvious 
from (3.10). This integral has been carried out previously by Sirovich (1961) 
and can be expressed in terms of Airy functions. It should be emphasized that in 
this form the solutions are uniformly valid through magnetosonic conditions. 

If the integration is first carried out in the complex n plane, the poles can be 
found by factoring the denominator into the form 

(3.15) @(n - n+) (n - n-), 

where (3.16) 

It can be shown that if @Y > 0 the n+ pole is in the upper half plane and the n- 
pole is in the lower half plane, and that if O Y  < 0 the reverse is true. The pole 
corresponding to the wave being studied is the one which goes to zero as Y -+ 0; 
this is the n+ pole. Therefore, the contour should be closed in the half plane in 

24 Fluid Mech. 33 
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which this pole lies. If the contour is completed in the upper half plane, h > 0; 
if the contour is completed in the lower half plane, h < 0. The sign of h, together 
with the orientation of the h, t co-ordinates, determines whether the wave extends 
upstream or downstream. 

Although the non-dissipative analysis does not determine which portion of a 
given wave is the correct one, the choice can be made by other means, without 
referring to the dissipative theory (see, for example, McCune & Resler 1960; 
Salathe & Sirovich 1967). Since it is also determined by the sign of OY, this sign 
must be invariant with respect to changes in the relative value of the viscosity, 
thermal and electrical conductivity. But Y is of the form 

Y = - Y 1 + L Y 2 + - Y 3 .  1 1 
Re PrRe Rrn 

(3.17) 

Therefore, for a given wave Yl, Y2, and Y ,  must all have the same sign. This state- 
ment is proved by Salathe (1965, appendix B). 

Evaluating theintegral Igives (Sirovich 1961, 1967 b ) .  

I = sgn [BY] H(h sgn OY) 

(3.18) 
where H ( x )  is the step function, A,(z) is the Airy integral, given by 

(3.19) 

(3.20) 

With this expression for the integral, the entire solution can be written down, 
uniformly valid through sonic conditions. However, because of the complex 
forms of these solutions, they will be exhibited only for non-magnetosonic con- 
ditions; that is, for the case @ boundedawayfrom zero. Thenusing the asymptotic 
expansion of the Airy integral, 1 is to lowest order (see for example, Miller (1946)) 

In a similar manner, its derivative can be found to lowest order 

(3.21) 

With these reduced expressions for I and aI/at, we obtain, for example, 

U, = {[U,A2B,B,sin20- U,A2BZsin0cos0+ U~sin38cos0] (m+ E )  
- [ U, A2 B, B, sin2 8 + y U i  sin3 8 cos 01 M, 

exp( - Ot2/4Yh) 
J( 4nOYh) 

+ [( U i  - 777:) sin4 0 - U i  A2Bi sin201 M,} 

- {( U, A2B, - U, yA2B, sin3 0 + U,yA2B, sin2 0 cos 0) 

(3.22) 

(3% exp (Ot2/4Yh) 
4m4Y ihg 

x F  - (3.23) 

The remaining lowest orders are given in Salathe (1965).) 
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We note that 
exp ( - Ot2/4Yh) 1 

= -6(t). o lim 
y+o (40Ynh)4 

(3.24) 

Comparing this with the non-dissipative solution obtained by Salathe & Siro- 
vich (1967), it  is obvious that the two solutions are identical provided that 

4 

(3.25) 

l + y  

The function 0 is given explicitly in terms of sin O,, cos O,, but the left side of 
(3.25) involves all the roots, d,, of the fourth-order equation DND = 0, which 
cannot be solved conveniently. Equation (3.25) is proved in Salathe (1965, 
appendix C) . 

We note that the approach to the non-dissipative solution is non-uniform, 
in the same sense that we described for the wake solution. 

4. Aligned fields case 
For flows in the neighbourhood of the aligned fields case, B, - 0, a special 

analysis is required. In  this situation k,/k,  = 0 is a triple root of D ,  = 0, instead 
of a simple root. The two non-zero roots lead to structured waves and this is 
covered by the analysis of the last section. Hence we focus attention on the 
structure of the wakes. Applying the boundary-layer analysis to D we obtain 

1 1 
+ PrRe __ [ - 70: - yU;A2 + yA2] - [y U i ] )  + ik, k! 

[ y ]  = ik,2A(kl-ia,k,2) (k,-ia,k,2) (k l - iask; ) ,  (4.1) 
1 1 1  

Re PrRe Rm 
+k,8--- 

where A = - F, y - 77: A2 + y U: A2 and ia,, ia,, ia, are the non-trivial roots of 
D.t The three factors occur because the wake now consists of the two waves 
which collapse on the x axis as B, -+ 0 as well as the entropy wake. 

It is well known that if A > 0 (U, < l/{l/A2+ l/y}) one of the waves collapses 
upstream, whereas if A < 0 they both collapse downstream (see, for example 
Salathe & Sirovich, 1967). Correspondingly, it can be shown that if A < 0 all 
the roots of (4.1) lie in the upper half of the complex k, plane, while if A > 0 
one of the roots lies in the lower half plane. 

t Fan (1964) states that the cli are real. Although we have been able to show this in special 
cases, the general proof has eluded us. This assertion is plausible on physical grounds and 
we will henceforth assume that it is true. 

24-2 
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In addition to the leading terms of the determinant, we need the leading terms 
of M*. These are: 

M &  = k;ki [  - A2Ui  - (7 - 1) U$ + (7 - 1) A,]  + ik,k!~ 

Y 

(4.2) 
1 1  

Y MT, = M &  = k:k;[U,A2]+ik k 4 ( - [ - A 2 ] ) ,  PrRe 

1 1  

M:2 = k : k i [ - ( y + A 2 )  U z ]  + iklk:(&e[Ux+UxA2]+--[yU,] Rm } +k$ {;mP??!Re)’ ____ 

MF4= M& = k?ki [U$-A2]+ik lk:  

1 

M& = (7- 1) M &  = k:kg (7- 1) UzA2, 
1 1  

Y 1  

M& = kTk:[A2- 77:- U$A2]+ik1k: 

MT, = -k:A2Mz1 = i k ~ k ~ A 2 U ~ + k l k ~ A 2 U ,  __ +- -&-sA2-- (PTRe Ae) PrRe Re’ 

MiT, = -k$A2M& = -ikTkiyU,A2-k k 5 -  A,, ’ ,PrRe 

M&, = - kgA2(y - 1) HZ4 = k;k: U i  - ik ‘ k4 U 
“Re 

(iklUx+PrR; 1 

Neglected entries are of higher order. 
These elements can be written in the form 

(4.3) i 
HEv = ~p,k~(1C,-iP~IC32)(kl-iP2uvk$) for p, Y < 4; ,U = Y = 5 ,  

MzU = (ik?5u/ik3) k;(kl - iPpk:) (kl - iPpk; )  v = 1,4, 

M:5 = ik3M~5ki(k,-iP~5ki)(k1-iPt5k:) for ,u = 1,4, 

for 

where the MIL, are constants. 
Let w = {p ,  u,, u,, T, bx). Then we can obtain the wake solution in the form 

+ m  (kl-i/34”k:) (k1-iP1”,”k:)exp ( ik ,x+ ik , z )dk ,dk ,  .___ 

(k, - iu,k$) (k ,  - ia, k:) (k, - ia, k$) 



Dissipative magnetogasdynamic jlow 373 

The solution exhibits three structured layers, all downstream for A < 0, two 
downstream and one upstream for A > 0. Before discussing this solution we 
shall write down the gasdynamic limit, obtained by setting A = 0. The denomin- 
ator becomes a quadratic, factoring exactly with one factor containing only 1/Re, 
the other 11PrRe. We find 

which is the same as found by Sirovich (19676). We see from this that the gas- 
dynamic wake consists of two distinct layers, one carrying only vorticity and 
structured only by viscosity, the other an entropy wake structured by thermal 
conductivity. 

The magnetohydrodynamic wake does not, in general, exhibit this splitting 
of effects. Except under special conditions all three wakes are structured by all 
three dissipative parameters, and all three carry vorticity, current and entropy 
disturbances. 

In  the limit y + 1 the energy equation decouples so that temperature can be 
solved for separately (although the other variables still depend on the energy 
equation). This is manifested in the wake solution in a number of ways. The 
denominator now contains the factor {k, - i( lIUxPrRe) kg} times a quadratic 
containing only R e  and Rm. Hence one wake is structured only by thermal 
conductivity while the other two are structured by viscosity and electrical con- 
ductivity. Furthermore, inspection of the cofactor matrix elements shows that 
this wake is excited only by the energy source, S,  = H ,  although it carries all 
the disturbances (i.e. p, ux, T ,  bx). We also note that temperature depends only 
on H and is carried only in this heat conduction wake: 

Non-dissipative limit 

If the equations governing non-dissipative aligned fields magnetohydrodynamic 
flow are considered, we are led to the evaluation of the following integral: 

(4.7) 

The third-order pole a t  k,  = 0 corresponds to the wake, while the poles at  
k,/kg = & id correspond to the remaining (hyperbolic or elliptic) flow field. 

This expression is, in fact, the inviscid counterpart of the integral which occurs 
in (4.4). In  order to evaluate (4.7) it is necessary to write, instead of k: in the 
,denominator, the expression (k ,  - ie,) (k, -is,) (k, - ia,) where the ei are real. 
'(They can, in fact, be complex, but (4.4) implies that they be real.) If a flow has 
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only downstream wakes the ei are all positive and the value of Q, is independent 
of the way the ei vanish. On the other hand, if an upstream wake occurs one of the 
ei must be negative (the other two must be positive) and a simple calculation 
shows that an infinite variety of forms for Q, is possible as the ei vanish at  dif- 
ferent rates. It is clear from (4.4) that the correct non-dissipative solution 
follows only by considering the ratios of the dissipative parameters as they 
vanish. Therefore the correct non-dissipative solution follows only from a con- 
sideration of the underlying dissipative problem, for flows where an upstream 
wake occurs. 

In a paper on the non-dissipative theory (Salathe & Sirovich 1967) we obtained 
an aligned fields wake by letting the angle between the applied magnetic field 
and the free stream velocity approach zero. The effect of non-alignment is to 
split the triple pole into three simple poles along the real axis, one being at the 
origin. The integration can then be performed because it is again clear physically 
whether the path should go under or over the poles. The aligned fields solution 
obtained in this way agrees with the above-mentioned solutions when all wakes 
are downstream (A < 0), but when one wave collapses upstream (A > 0) the 
solution obtained cannot be realized as a non-dissipative limit of our dissipative 
aligned fields wake. Therefore this method of obtaining the solution is invalid, 
as are the other methods which have been proposed (Sears & Resler 1959; Stewart- 
son 1960; Leibovich & Ludford 1966). 

We shall now consider various non-dissipative limits of the dissipative solution. 
The determinant D can be abbreviated in the form 

D N k!(ik3A + k 2 a  + ikW + 9), (4.8) 

where k = k,/kz and the definitions of a, W and 9 are obvious from (4.1). If one 
of the dissipative parameters (l/Re, 1/Rm, l/RePr) approaches zero, 9 --f 0, 
one layer collapses to a non-dissipative wake, and D becomes a quadratic. It is 
easy to see that the roots of the remaining quadratic are both in the upper half 
plane if A < 0, and one in each half plane if A > 0. Hence it is always one of the 
downstream wakes which collapses. Letting a second parameter approach zero, 
we obtain two-non-dissipative wakes, and the third still structured. The root 
of D is now k = i a /A .  

It is easy to see that A < 0 implies 95’ < 0 so that the root is in the upper half 
plane. However, if A > 0 we can have either 98 < 0 or a > 0, the latter being the 
case only when U, < 1/{1+ 1/A2)t = P and the 1IPrRe term in 223 dominates over 
the 1/Re and 1/Rm terms. Except for this case, we have that the last remaining 
diffusing wake is upstream. When heat conduction dominates and 0 < U < P 
the flow pattern consists of one upstream and one downstream non-dissipative 
wake and a downstream diffusing wake. 

The point A = 0 corresponds to the cusp along the B-axis on the second Fried- 
richs diagram, and is given in terms of dimensional variables by 

U 2  = 1 /{ 1 /a2 + 1 /d2) 

where .d is the Alfv6n speed and a the isothermal sound speed. The point P is 
obtained by replacing a by c, the adiabatic sound speed. 
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A flow field containing some diffusing, some non-diffusing wakes is not con- 
tradictory, since the non-diffusing wakes always carry only those disturbances 
which would not disperse under the action of the remaining dissipation. For 
example, if heat conduction is the only dissipation present, the two non-dissi- 
pative wakes contain vorticity and current, but no temperature disturbances. 

We shall now give the solutions in some limiting cases. Suppose RePr+ CQ 

(i.e. K -+ 0). One of the roots of D,  say %, approaches zero and the wake becomes 
a delta function. However, as has been pointed out before, ai appears multiplied 
by x in the solution, so no matter how small ai is we may choose x such that a t x  
is not small. As a3 -+ 0, therefore, we do not obtain the delta function, but a 
structured wake very much thinner than the other two. We shall therefore retain 
the lowest order in a3 and display the structure of this thin sublayer. 

In  the limit RePr --f co we obtain immediately from (4.1) that a3 = l/(UxPrRe). 
The leading terms for this portion of the wake are 

(4.9) 

1 
p = - [ (y- l )M-E]H(x)  

YUX 
T = -p. 

(The factor in the brackets approaches 6(z)  as x/PrRe -+ 0.) This is the entropy 
wake that appeared in the non-aligned fields case, and is also one of the two wakes 
that appear in the gasdynamic solution. 

Next consider the limiting case 1/Re 4 1, i.e. the limit of vanishing viscosity. 
We obtain (for the collapsing wave only) to lowest order 

(4.10) 

This will be recognized as one of the two wakes that occur in gasdynamics (i.e. 
the vorticity wake). The collapsing wake for 1/Rm < 1 is given by 

(4.11) 

[ U,( 1 + A2) Rm]* ( Ux( 1 + A2) Rmz2 
- exp -. A2 

= Ux(A2+ 1) MH(x) 4nx 4x 

1 b =-- 
x A2P. 

For the two cases 1/Rm B 1/Re B l/PrRe and 1/Rm B l/PrRe >> 1/Re we have 
two downstream wakes, one much thinner than the other, and both much thinner 
than the upstream wake. One of these waves is given by (4.9) and the other by 
(4.10). The upstream wake can easily be computed, but since it does not assume 
any particularly special form we shall not write it out. We note, however, that 
it does carry vorticity and entropy, which are diffused by Rm. This is a result 
of the coupling that occurs in magnetohydrodynamics. 

Consider now the two cases: ( 1 )  IIPrRe % 1/Rm 9 l/Re, and (2) 1/PrRe B 1/ 
Re 9 1/Rm. We again have three wakes, each a different order of thickness. The 
thickest wake, however (the one structured by PrRe) may now be either down- 
stream or upstream, as pointed out previously. The thinnest wake is always 
downstream and the remaining one is in the opposite direction to the PrRe wake. 
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In  summary, for A > 0 the non-dissipative wake solution (x/Re --f 0, etc.) con- 
sists of a downstream and upstream delta function singularity. However, the 
strength of these singularities, what disturbances they carry, and what sources 
they depend on are related to how the dissipation was taken to approach zero. 
This is important, since in actual fact the dissipation is never zero; some dissi- 
pative effects may dominate over others and in each case the non-dissipative 
limit has a different meaning. 

We saw that one solution would be obtained if electrical diffusion dominated, 
another if vorticity diffusion dominated. Two different solutions are obtained if 
thermal diffusion is dominant, depending on the relative value of U,. Other 
limits could be obtained, by, for example, letting all dissipation approach zero 
while remaining of the same order. 

5. The decoupled mode 

field in the y direction are solved. The transformed equations are 
In  this section equations (2.12) for the perturbation of velocity and magnetic 

ik, u, - i k ~  Bz - i k3  [ '4/] 
- ik,A2Bx - ik,A2B, ik, U, 

+ [(l/Rm)dkf+k3 0 ] ["I - - [i'",k"-ikPx] . (5.1) 

[ 
(1/Re) (k? + k;) u, MY 

Following the procedure of 5 3, we have for the leading term of the determinant 

B - mn(2 cos 8 sin O( U i  - A2BZ) + (cosz O - sin2 0) 2A2B, B, 

+ 2 sin O cos 8 A2Bz) - im3Uu, sin 8 - + __ 

(5.2) 

valid for A and B, bounded away from zero. 
Integrating first with respect to m, we find that the pole is in the upper or 

lower half plane depending on whether QP is positive or negative, respectively. 
Since the contour of integration is closed on the half plane containing the pole, 
we therefore conclude that h > 0 if QP > 0, h < 0 if QP < 0. 

If the transposed cofactor matrix is also transformed and only the leading 
term retained, the dissipative solution is found to be 

( l e  R1,) 
= mnP - im3Q 

M Y  
(4nPQh)J b, = H[h-sgn (QP)] sgn (QP) { (Bu, sin B - B, cos 8)  

+ (sin 6' F,  + cos OF,) (U, sin 0) 
(5.3) 

Mi/ u, = H[h sgn (QP)] sgn (QP) U ,  sin 0 1 (47~pQhP 

+A2(BzsinO-B,cos0) (sin8FB+cosOFx)-- 4ntQh (p) t lexp - Qh (--$I .J 
In  the limit R -+ co, the non-dissipative solution obtained by Salathe & Siro- 

vich (1967) is recovered as a non-uniform limit. 
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Aligned $el& 
When B, = 0, we have 

1 1  
D = ( A 2 -  U;)k:+iklUx -+- kg+--kIC4, ( i e  J m )  ReRm 

= (A2 - u:) (k, - ia,k,2) (k, - ia2k,2). 

In  this case we can have a,, a2 positive (U: > A 2 )  or one positive, one negative 
(U: < A2).  The solution is 

a a ai - ( l/UxRe) exp ( - z2/4aix) 
~ ( ax az 1 a2-al 1 ( 4nai x p  * 

+Ux Fa--F,- ~ 

As before, the wake consists of two structured layers, either both downstream or 
one upstream and one downstream. Each wake is structured by both electrical 
conductivity and viscosity. 

The results presented in this paper were obtained in the course of research 
sponsored by the Office of Naval Research under Contract no. 562(39) with 
Brown University, Providence, Rhode Island. 
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